Ancestors of tapirs and ancient cousins of rhinos living above the Arctic Circle 53 million years ago endured six months of darkness each year in a far milder climate than today that featured lush, swampy forests, according to a new study led by the University of Colorado at Boulder.
CU-Boulder Assistant Professor Jaelyn Eberle said the study shows several varieties of prehistoric mammals as heavy as 1,000 pounds each lived on what is today Ellesmere Island near Greenland on a summer diet of flowering plants, deciduous leaves and aquatic vegetation. But in winter's twilight they apparently switched over to foods like twigs, leaf litter, evergreen needles and fungi, said Eberle, curator of fossil vertebrates at the University of Colorado Museum of Natural History and chief study author.
The study has implications for the dispersal of early mammals across polar land bridges into North America and for modern mammals that likely will begin moving north if Earth's climate continues to warm. A paper on the subject co-authored by Henry Fricke of Colorado College in Colorado Springs and John Humphrey of the Colorado School of Mines in Golden appears in the June issue of Geology.
The team used an analysis of carbon and oxygen isotopes extracted from the fossil teeth of three varieties of mammals from Ellesmere Island -- a hippo-like, semi-aquatic creature known as Coryphodon, a second, smaller ancestor of today's tapirs and a third rhino-like mammal known as brontothere. Animal teeth are among the most valuable fossils in the high Arctic because they are extremely hard and better able to survive the harsh freeze-thaw cycles that occur each year, Eberle said.
Telltale isotopic signatures of carbon from enamel layers that form sequentially during tooth eruption allowed the team to pinpoint the types of plant materials consumed by the mammals as they ate their way across the landscape through the seasons, Eberle said.
"We were able to use carbon signatures preserved in the tooth enamel to show that these mammals did not migrate or hibernate," said Eberle. "Instead, they lived in the high Arctic all year long, munching on some unusual things during the dark winter months." The study was funded by the National Science Foundation.
An analysis of oxygen isotopes from the fossil teeth helped determine seasonal changes in surface drinking water tied to precipitation and temperature, providing additional climate information, said Eberle. The results point to warm, humid summers and mild winters in the high Arctic 53 million years ago, where temperatures probably ranged from just above freezing to near 70 degrees Fahrenheit, Eberle said.
The environment on central Ellesmere Island, located at about 80 degrees north latitude, was part of a much larger circumpolar Arctic region at the time, she said. It probably was similar to swampy cypress forests in the southeast United States today and still contains fossil tree stumps as large as washing machines, Eberle said.
On central Ellesmere Island in today's high Arctic -- a polar desert that features tundra, permafrost, ice sheets, sparse vegetation and a few small mammals -- the temperature ranges from roughly minus 37 degrees F in winter to 48 degrees F in summer and is the coldest, driest environment on Earth. There is no sunlight in the high Arctic between October and February, and the midnight sun is present from mid-April through the end of August.
The year-round presence of mammals such as the hippo-like Coryphodon, tapirs and brontotheres in the high Arctic was a "behavioral prerequisite" for their eventual dispersal across high-latitude land bridges that geologists believe linked Asia and Europe with North America, Eberle said. Their dietary chemical signatures, portly shapes and fossil evidence for babies and juveniles in the Arctic preclude the idea of long, seasonal migrations to escape the winter darkness, she said.
"In order for mammals to have covered the great distances across land bridges that once connected the continents, they would have required the ability to inhabit the High Arctic year-round in proximity to these land bridges," Eberle said.
Instead, the animals likely made their way south from the Arctic in minute increments over millions of years as the climate shifted. "This study may provide the behavioral smoking gun for how modern groups of mammals like ungulates -- ancestors of today's horses and cattle -- and true primates arrived in North America," said Eberle, also an assistant professor in CU-Boulder's geological sciences department.